N90-28244
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Latent heating effects on stratocumulus circulations have been studied successfully with a
pine-coefficient spectral model of two-dimensional shallow Boussinesq convection
(Laufersweiler and Shirer, 1989: JAS, 1133-1153). Further, more realistic investigations are
being performed currently with a larger, 18-cocfficient spectral model, in which the effects of
cloud top radiational cooling and in-cloud radiational heating are also being represented.
Because assuming a rigid lid at the inversion basc may have affected previous results
significantly, we have raised the domain top to include the lower portion of the capping
inversion. As in the previous model, a uniform cloud base is assumed and latent heating effects
are included implicitly such that the motions in the sub- and above-cloud regions are dry
adiabatic and the motions in the cloud region are moist adiabatic. The effects of forcing by
radiational heating profiles that are tied to the cloud layer, such as the one used by Nicholls
(1984: QJRMS, 783-820), will be investigated, as will profiles measured during the FIRE
experiment.

One concern of using truncated spectral models is that the phenomena are so poorly
represented that they can change dramatically as the number of spectral coefficients is increased.
The efficacy of the nine-coefficient model results is checked by examining the steady state
solutions of the 18-coefficient model for parameter values used by Laufersweiler and Shirer
(1989), which corresponds to the case of a moderately deep cloud and no capping inversion (Fig.
1). Here, the horizontally asymmetric circulation patterns that bave narrow downdraft areas and
broad updraft areas are virtually the same as those found in the smaller spectral model (Fig. 1b).
Also captured in the case of weaker heating is an elevated circulation centered at cloud base
(Fig. 1a). Thus, the results of the smaller model are substantiated.

Since one of the goals of studying the new model is to represent a more realistic domain,
the second test of the model is to investigate whether the steady solutions are suppressed in the
case of an inversion with no cloud. The capping inversion should limit the convective
circulations, but we do not force this to happen with the imposition of a rigid lid at the inversion
base. Figure 2 shows the steady solutions for the case of a relatively strong inversion of 10
°C/km that begins at a height of 0.8z, as indicated by the tic. For the case when the value of the

Rayleigh number is pear its critical value (Fig. 2a), the circulations are weak and located in the
sub-inversion region of the domain. For a higher value of the Rayleigh number (Fig. 2b), the
circulation has intensified but is still restricted to the sub-inversion region; importantly, the
updrafts only penetrate into the inversion by a small amount. Thus, the model is correctly

representing the effects of an inversion by properly suppressing the convection.

Figures 3 and 4 are the first investigations into the performance of the model when both
the cloud and an inversion are represented. Figure 3 shows the steady solutions for a weak
inversion having a value of 2 °C/km and Fig. 4 shows the steady solutions for a fairly strong
inversion having a value of 10 °C/km. The higher value of the inversion strength, although
large, is still on the order of 1/2 of the values of the inversion strength that were measured
during FIRE, typically around 18 to 20 °C/km. By comparing the figures, we observe that the
intensity of the circulation patterns for the weaker inversion is stronger than that for the stronger
inversion; however, we are concerned that for higher values of the Rayleigh number, the
circulations penetrate too deeply into the inversion. This result may be due to the fact that the
latent beating, as represented in this model, is warming the flow far more than that found in the
actual boundary layer. Possibly, inclusion of radiative forcing will compensate for this effect.

The research for this work was supported in part by the National Science Foundation through Grant ATM-8619854
and by the Office of Naval Rescarch through Contract N0O00014-86-K-06880.
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Figure 2. The steady state dimensionless streamfunction w*, vertical velocity
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Figure 3. Tbe steady state dimensionless streamfunction ¥*, vertical velocity
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Figure 4. The steady state dimensionless streamfunction
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